A piece from author and Harvard Prof David Weinberger on his new book: To Know, but Not Understand: David Weinberger on Science and Big Data. A quote:
The problem -- or at least the change -- is that we humans cannot understand systems even as complex as that of a simple cell. It's not that were awaiting some elegant theory that will snap all the details into place. The theory is well established already: Cellular systems consist of a set of detailed interactions that can be thought of as signals and responses. But those interactions surpass in quantity and complexity the human brains ability to comprehend them. The science of such systems requires computers to store all the details and to see how they interact. Systems biologists build computer models that replicate in software what happens when the millions of pieces interact. It's a bit like predicting the weather, but with far more dependency on particular events and fewer general principles.
Models this complex -- whether of cellular biology, the weather, the economy, even highway traffic -- often fail us, because the world is more complex than our models can capture. But sometimes they can predict accurately how the system will behave. At their most complex these are sciences of emergence and complexity, studying properties of systems that cannot be seen by looking only at the parts, and cannot be well predicted except by looking at what happens.
This marks quite a turn in science's path.